English | 简体中文 | 繁體中文 | Русский язык | Français | Español | Português | Deutsch | 日本語 | 한국어 | Italiano | بالعربية

Обзор инъекции Dll на уровне Ring3 для Windows x86/x64

0x01.Введение

  Упоминая внедрение Dll, можно сразу подумать о множестве методов, таких как использование удаленных потоков, Apc и т.д., поэтому я хочу сделать краткое резюме о внедрении Dll на уровне Ring3.

  Я разделил методы внедрения на шесть категорий: 1. Создание нового потока, 2. Настройка контекста上下ного потока, изменение регистров, 3. Вставка в очередь Apc, 4. Изменение реестра, 5. Группировка оконных сообщений, 6. Удаленное ручное выполнение LoadLibrary.

  Так что начнем наше обучение!

0x02.Подготовка

  В программе, в которой происходит внедрение, повышение прав программы, естественно, является необходимым, и я предоставил два封装енных функции, которые можно использовать для повышения прав. Первый - это настройка прав через токен прав; Второй - это настройка прав через недокументированные функции RtlAdjustPrivilege из ntdll.dll.

// Передача параметра SE_DEBUG_NAME, повышение до прав доступа отладчика
BOOL GrantPriviledge(WCHAR* PriviledgeName)
{
TOKEN_PRIVILEGES TokenPrivileges, OldPrivileges;
DWORD dwReturnLength = sizeof(OldPrivileges);
HANDLE TokenHandle = NULL;
LUID uID;
// Открывает правовой тег
if (!OpenThreadToken(GetCurrentThread(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, FALSE, &TokenHandle))
{
if (GetLastError() != ERROR_NO_TOKEN)
{
return FALSE;
}
if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &TokenHandle))
{
return FALSE;
}
}
if (!LookupPrivilegeValue(NULL, PriviledgeName, &uID)) // Поиск uID по имени права
{
CloseHandle(TokenHandle);
return FALSE;
}
TokenPrivileges.PrivilegeCount = 1; // Количество прав, которые нужно повысить
TokenPrivileges.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; // Динамический массив, размер массива зависит от значения Count
TokenPrivileges.Privileges[0].Luid = uID;
// Здесь мы производим настройку прав
if (!AdjustTokenPrivileges(TokenHandle, FALSE, &TokenPrivileges, sizeof(TOKEN_PRIVILEGES), &OldPrivileges, &dwReturnLength))
{
CloseHandle(TokenHandle);
return FALSE;
}
// Успешно
CloseHandle(TokenHandle);
return TRUE;
}

  Следовательно,既然 мы будем внедрять Dll в целевой процесс, получение идентификатора целевого процесса является необходимым, потому что肯定会 использовать OpenProcess, и я также предоставил два метода получения идентификатора процесса по имени образа целевого процесса. Первый - это наиболее распространенный метод создания системного снимка процессов с помощью TlHelp; Второй - это использование функций перечисления Psapi, но этот метод у меня реализован с недостатками, так как в 32-битной версии не можно получить идентификатор 64-битного процесса.

// Использование функций ToolHelp
#include <TlHelp32.h>
BOOL GetProcessIdByProcessImageName(IN PWCHAR wzProcessImageName, OUT PUINT32 ProcessId)
{
HANDLE ProcessSnapshotHandle = INVALID_HANDLE_VALUE;
PROCESSENTRY32 ProcessEntry32 = { 0 };
ProcessEntry32.dwSize = sizeof(PROCESSENTRY32); // Инициализация структуры PROCESSENTRY32
ProcessSnapshotHandle = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0); // Снимок всех процессов системы
if (ProcessSnapshotHandle == INVALID_HANDLE_VALUE)
{
return FALSE;
}
if (Process32First(ProcessSnapshotHandle, &ProcessEntry32)) // Найти первый
{
do
{
if (lstrcmpi(ProcessEntry32.szExeFile, wzProcessImageName) == 0) // Не учитывает регистр
{
*ProcessId = ProcessEntry32.th32ProcessID;
break;
}
} while (Process32Next(ProcessSnapshotHandle, &ProcessEntry32));
}
CloseHandle(ProcessSnapshotHandle);
ProcessSnapshotHandle = INVALID_HANDLE_VALUE;
if (*ProcessId == 0)
{
return FALSE;
}
return TRUE;
}
// Использование функций枚рирования Psapi
#include <Psapi.h>
BOOL GetProcessIdByProcessImageName(IN PWCHAR wzProcessImageName, OUT PUINT32 ProcessId)
{
DWORD dwProcessesId[1024] = { 0 };
DWORD BytesReturned = 0;
UINT32 ProcessCount = 0;
// Получение всех идентификаторов процессов текущей операционной системы, сохраненных в массиве dwProcessesId
if (!EnumProcesses(dwProcessesId, sizeof(dwProcessesId), &BytesReturned))
{
return FALSE;
}
ProcessCount = BytesReturned / sizeof(DWORD);
// Прогон
for (INT i = 0; i < ProcessCount; i++)
{
HMODULE ModuleBase = NULL;
WCHAR wzModuleBaseName[MAX_PATH] = { 0 };
HANDLE ProcessHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, dwProcessesId[i]);
if (ProcessHandle == NULL)
{
continue;
}
if (EnumProcessModulesEx(ProcessHandle, &ModuleBase, sizeof(HMODULE), &BytesReturned, LIST_MODULES_ALL))
{
// Получение имени первого модуля процесса
GetModuleBaseName(ProcessHandle, ModuleBase, wzModuleBaseName, MAX_PATH * sizeof(WCHAR));
}
CloseHandle(ProcessHandle);
ProcessHandle = NULL;
if (lstrcmpi(wzModuleBaseName, wzProcessImageName) == 0) // Не различает大小 буквы
{
*ProcessId = dwProcessesId[i];
break;
}
}
if (*ProcessId == 0)
{
return FALSE;
}
return TRUE;
}

  Затем в операциях, таких как вставка в очередь Apc, приостановка потока и т.д., необходимо производить операции с потоками целевого процесса, поэтому получение идентификатора потока также необходимо, и я также предоставил два метода получения идентификатора потока по идентификатору процесса. Первый все еще использует TlHelp для создания системного снимка потоков, сохраняя все потоки в шаблон vector (для использования в Apc инъекции); второй использует метод ZwQuerySystemInformation, перечисляя системную информацию о процессах, этот метод возвращает только один идентификатор потока, что уже достаточно.

// 枚举指定进程Id的所有线程,压入模板中
#include <vector>
#include <TlHelp32.h>
using namespace std;
BOOL GetThreadIdByProcessId(IN UINT32 ProcessId, OUT vector<UINT32>& ThreadIdVector)
{
HANDLE ThreadSnapshotHandle = NULL;
THREADENTRY32 ThreadEntry32 = { 0 };
ThreadEntry32.dwSize = sizeof(THREADENTRY32);
ThreadSnapshotHandle = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, 0); // 给系统所有的线程快照
if (ThreadSnapshotHandle == INVALID_HANDLE_VALUE)
{
return FALSE;
}
if (Thread32First(ThreadSnapshotHandle, &ThreadEntry32))
{
do
{
if (ThreadEntry32.th32OwnerProcessID == ProcessId)
{
ThreadIdVector.emplace_back(ThreadEntry32.th32ThreadID); // 把该进程的所有线程id压入模板
}
} while (Thread32Next(ThreadSnapshotHandle, &ThreadEntry32));
}
CloseHandle(ThreadSnapshotHandle);
ThreadSnapshotHandle = NULL;
return TRUE;
}
// ZwQuerySystemInformation+SystemProcessInformation
typedef
NTSTATUS(NTAPI * pfnZwQuerySystemInformation)()
IN SYSTEM_INFORMATION_CLASS SystemInformationClass,
OUT PVOID SystemInformation,
IN UINT32 SystemInformationLength,
OUT PUINT32 ReturnLength OPTIONAL);
BOOL GetThreadIdByProcessId(IN UINT32 ProcessId, OUT PUINT32 ThreadId)
{
BOOL bOk = FALSE;
NTSTATUS Status = 0;
PVOID BufferData = NULL;
PSYSTEM_PROCESS_INFO spi = NULL;
pfnZwQuerySystemInformation ZwQuerySystemInformation = NULL;
ZwQuerySystemInformation = (pfnZwQuerySystemInformation)GetProcAddress(GetModuleHandle(L"ntdll.dll"), "ZwQuerySystemInformation");
if (ZwQuerySystemInformation == NULL)
{
return FALSE;
}
BufferData = malloc(1024 * 1024);
if (!BufferData)
{
return FALSE;
}
// При використанні функцій ряду QuerySystemInformation, необхідно попередньо замовити пам'ять для SystemProcessInformation, не можна спочатку отримати довжину, а потім повторно викликати
Status = ZwQuerySystemInformation(SystemProcessInformation, BufferData, 1024 * 1024, NULL);
if (!NT_SUCCESS(Status))
{
free(BufferData);
return FALSE;
}
spi = (PSYSTEM_PROCESS_INFO)BufferData;
// Пробуємо знайти наш процес серед процесів
while (TRUE)
{
bOk = FALSE;
if (spi->UniqueProcessId == (HANDLE)ProcessId)
{
bOk = TRUE;
break;
}
else if (spi->NextEntryOffset)
{
spi = (PSYSTEM_PROCESS_INFO)((PUINT8)spi + spi->NextEntryOffset);
}
else
{
break;
}
}
if (bOk)
{
for (INT i = 0; i < spi->NumberOfThreads; i++)
{
// 返出找到的线程Id
*ThreadId = (UINT32)spi->Threads[i].ClientId.UniqueThread;
break;
}
}
if (BufferData != NULL)
{
free(BufferData);
}
return bOk;
}

  嗯,目前为止,预备工作差不多完工,那我们就开始正题吧!

0x03.注入方法一 -- 创建新线程

  创建新线程,也就是在目标进程里,创建一个线程为我们服务,而创建线程的方法我找到的有三种:1.CreateRemoteThread;2.NtCreateThreadEx;3.RtlCreateUserThread。

  基本思路是:1.在目标进程内存空间申请内存;2.在刚申请的内存中写入Dll完整路径;3.创建新线程,去执行LoadLibrary,从而完成注入Dll。

  ps:这里直接使用从自己加载的kernel32模块导出表中获得LoadLibrary地址,是因为一般情况下,所有进程加载这类系统库在内存中的地址相同!

  因为只是创线程所使用的函数不一样,所以下面的代码随便放开一个创线程的步骤,屏蔽其他两个,都是可以成功的,这里我放开的是NtCreateThreadEx。

typedef NTSTATUS(NTAPI* pfnNtCreateThreadEx)
(
OUT PHANDLE hThread,
IN ACCESS_MASK DesiredAccess,
IN PVOID ObjectAttributes,
IN HANDLE ProcessHandle,
IN PVOID lpStartAddress,
IN PVOID lpParameter,
IN ULONG Flags,
IN SIZE_T StackZeroBits,
IN SIZE_T SizeOfStackCommit,
IN SIZE_T SizeOfStackReserve,
OUT PVOID lpBytesBuffer);
#define NT_SUCCESS(x) ((x) >= 0)
typedef struct _CLIENT_ID {
HANDLE UniqueProcess;
HANDLE UniqueThread;
} CLIENT_ID, *PCLIENT_ID;
typedef NTSTATUS(NTAPI * pfnRtlCreateUserThread)(
IN HANDLE ProcessHandle,
IN PSECURITY_DESCRIPTOR SecurityDescriptor OPTIONAL,
IN BOOLEAN CreateSuspended,
IN ULONG StackZeroBits OPTIONAL,
IN SIZE_T StackReserve OPTIONAL,
IN SIZE_T StackCommit OPTIONAL,
IN PTHREAD_START_ROUTINE StartAddress,
IN PVOID Parameter OPTIONAL,
OUT PHANDLE ThreadHandle OPTIONAL,
OUT PCLIENT_ID ClientId OPTIONAL);
BOOL InjectDll(UINT32 ProcessId)
{
HANDLE ProcessHandle = NULL;
ProcessHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, ProcessId);
// 在对方进程空间申请内存,存储Dll完整路径
UINT32 DllFullPathLength = (strlen(DllFullPath) + 1);
PVOID DllFullPathBufferData = VirtualAllocEx(ProcessHandle, NULL, DllFullPathLength, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
if (DllFullPathBufferData == NULL)
{
CloseHandle(ProcessHandle);
return FALSE;
}
// 将DllFullPath写进刚刚申请的内存中
SIZE_T ReturnLength;
BOOL bOk = WriteProcessMemory(ProcessHandle, DllFullPathBufferData, DllFullPath, strlen(DllFullPath) + 1, &ReturnLength);
LPTHREAD_START_ROUTINE LoadLibraryAddress = NULL;
HMODULE Kernel32Module = GetModuleHandle(L"Kernel32");
LoadLibraryAddress = (LPTHREAD_START_ROUTINE)GetProcAddress(Kernel32Module, "LoadLibraryA");
pfnNtCreateThreadEx NtCreateThreadEx = (pfnNtCreateThreadEx)GetProcAddress(GetModuleHandle(L"ntdll.dll"), "NtCreateThreadEx");
if (NtCreateThreadEx == NULL)
{
CloseHandle(ProcessHandle);
return FALSE;
}
HANDLE ThreadHandle = NULL;
// 0x1FFFFF #define THREAD_ALL_ACCESS (STANDARD_RIGHTS_REQUIRED | SYNCHRONIZE | 0xFFFF)
NtCreateThreadEx(&ThreadHandle, 0x1FFFFF, NULL, ProcessHandle, (LPTHREAD_START_ROUTINE)LoadLibraryAddress, DllFullPathBufferData, FALSE, NULL, NULL, NULL, NULL);
/*
pfnRtlCreateUserThread RtlCreateUserThread = (pfnRtlCreateUserThread)GetProcAddress(GetModuleHandle(L"ntdll.dll"), "RtlCreateUserThread");
HANDLE ThreadHandle = NULL;
NTSTATUS Status = RtlCreateUserThread(ProcessHandle, NULL, FALSE, 0, 0, 0, LoadLibraryAddress, DllFullPathBufferData, &ThreadHandle, NULL); 
*/
/*
HANDLE ThreadHandle = CreateRemoteThread(ProcessHandle, NULL, 0, LoadLibraryAddress, DllFullPathBufferData, 0, NULL); // CreateRemoteThread функции
*/
if (ThreadHandle == NULL)
{
CloseHandle(ProcessHandle);
return FALSE;
}
if (WaitForSingleObject(ThreadHandle, INFINITE) == WAIT_FAILED)
{
return FALSE;
}
CloseHandle(ProcessHandle);
CloseHandle(ThreadHandle);
return TRUE;
}

0x04. Метод инъекции之二 - настройка контекста线程а

  Основная цель настройки контекста线程а - это заставить определенный поток процесса перейти к выполнению нашего кода, а затем вернуться к выполнению своих задач, и наш код - это последовательность ShellCode,硬编码ированная на ассемблере.

  Эта последовательность ShellCode выполняет три действия: 1. Передает полный путь к Dll в качестве параметра; 2. Вызывает адрес функции LoadLibrary; 3. Возвращает прежнее значение Eip или Rip.

  Выбранные мной команды вызова - ff 15 и ff 25, в 32-битной версии это команды прыжка к адресу, хранящемуся в байтах кода после команды (15) (25), в 64-битной версии после команды (15) (25) хранится смещение, и этот прыжок ведет к адресу, хранящемуся в смещении. В данном случае я записал смещение как 0, чтобы упростить вычисления.

#ifdef _WIN64
// тест 64-битного dll, баг исправлен
/*
0:019> u 0x000002b5d5f80000
000002b5`d5f80000 4883ec28 sub rsp,28h
000002b5`d5f80004 488d0d20000000 lea rcx,[000002b5`d5f8002b]
000002b5`d5f8000b ff1512000000 call qword ptr [000002b5`d5f80023]
000002b5`d5f80011 4883c428 add rsp,28h
000002b5`d5f80015 ff2500000000 jmp qword ptr [000002b5`d5f8001b]
*/
UINT8 ShellCode[0x100] = {
0x48,0x83,0xEC,0x28, // sub rsp ,28h
0x48,0x8D,0x0d, // [+4] lea rcx,
0x00,0x00,0x00,0x00, // [+7] DllNameOffset = [+43] - [+4] - 7
// call прыжок по смещению, к адресу, расшифровка *
0xff,0x15, // [+11]
0x00,0x00,0x00,0x00, // [+13] 
0x48,0x83,0xc4,0x28, // [+17] add rsp,28h
// jmp прыжок по смещению, к адресу, расшифровка *
0xff,0x25, // [+21]
0x00,0x00,0x00,0x00, // [+23] LoadLibraryAddressOffset
// Хранение прежнего rip
0x00,0x00,0x00,0x00, // [+27]
0x00,0x00,0x00,0x00, // [+31]
// Ловушка адреса loadlibrary
0x00,0x00,0x00,0x00, // [+35] 
0x00,0x00,0x00,0x00, // [+39]
// Хранение полного пути к dll
// 0x00,0x00,0x00,0x00, // [+43]
// 0x00,0x00,0x00,0x00 // [+47]
// ......
};
#else
// Тест 32-битного внедрения с новым Dll
/*
0:005> u 0x00ca0000
00000000`00ca0000 60 pusha
00000000`00ca0001 9c pushfq
00000000`00ca0002 681d00ca00 push 0CA001Dh
00000000`00ca0007 ff151900ca00 call qword ptr [00000000`01940026]
00000000`00ca000d 9d popfq
00000000`00ca000e 61 popa
00000000`00ca000f ff251500ca00 jmp qword ptr [00000000`0194002a]
*/
UINT8 ShellCode[0x100] = {
0x60, // [+0] pusha
0x9c, // [+1] pushf
0x68, // [+2] push
0x00,0x00,0x00,0x00, // [+3] ShellCode + 
0xff,0x15, // [+7] call 
0x00,0x00,0x00,0x00, // [+9] LoadLibrary Addr Addr
0x9d, // [+13] popf
0x61, // [+14] popa
0xff,0x25, // [+15] jmp
0x00,0x00,0x00,0x00, // [+17] jmp eip
// Адрес eip
0x00,0x00,0x00,0x00, // [+21]
// Адрес LoadLibrary
0x00,0x00,0x00,0x00, // [+25] 
// DllFullPath 
0x00,0x00,0x00,0x00 // [+29] 
};
#endif

  Весь процесс инъекции состоит из следующих шагов: запрос памяти (исполнимая память) в целевом процессе ----> заполнение адресного кода, необходимого для ShellCode ----> запись ShellCode в запрошенную память ----> SuspendThread (приостановить поток) ----> GetThreadContext (получить контекст上下ного потока) ----> изменить Eip или Rip контекста на адрес начала ShellCode ----> SetThreadContext (установить измененный контекст) ----> ResumeThread (восстановить выполнение потока).

BOOL Inject(IN UINT32 ProcessId, IN UINT32 ThreadId)
{
BOOL bOk = FALSE;
CONTEXT ThreadContext = { 0 };
PVOID BufferData = NULL;
HANDLE ThreadHandle = OpenThread(THREAD_ALL_ACCESS, FALSE, ThreadId);
HANDLE ProcessHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, ProcessId);
// Сначала приостановить поток
SuspendThread(ThreadHandle);
ThreadContext.ContextFlags = CONTEXT_ALL;
if (GetThreadContext(ThreadHandle, &ThreadContext) == FALSE)
{
CloseHandle(ThreadHandle);
CloseHandle(ProcessHandle);
return FALSE;
}
BufferData = VirtualAllocEx(ProcessHandle, NULL, sizeof(ShellCode), MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
if (BufferData != NULL)
{
if (LoadLibraryWAddress != NULL)
{
#ifdef _WIN64
// ShellCode + 43-е место хранится полная путь
PUINT8 v1 = ShellCode + 43;
memcpy(v1, DllFullPath, (wcslen(DllFullPath) + 1) * sizeof(WCHAR));
UINT32 DllNameOffset = (UINT32)(((PUINT8)BufferData + 43) - ((PUINT8)BufferData + 4) - 7);
*(PUINT32)(ShellCode + 7) = DllNameOffset;
// в ShellCode + 35 устанавливается адрес функции LoadLibrary
*(PUINT64)(ShellCode + 35) = (UINT64)LoadLibraryWAddress;
UINT32 LoadLibraryAddressOffset = (UINT32)(((PUINT8)BufferData + 35) - ((PUINT8)BufferData + 11) - 6);
*(PUINT32)(ShellCode + 13) = LoadLibraryAddressOffset;
// устанавливается адрес rip
*(PUINT64)(ShellCode + 27) = ThreadContext.Rip;
if (!WriteProcessMemory(ProcessHandle, BufferData, ShellCode, sizeof(ShellCode), NULL))
{
return FALSE;
}
ThreadContext.Rip = (UINT64)BufferData;
#else
PUINT8 v1 = ShellCode + 29;
memcpy((char*)v1, DllFullPath, (wcslen(DllFullPath) + 1) * sizeof(WCHAR)); //здесь указывается имя DLL для инъекции
*(PUINT32)(ShellCode + 3) = (UINT32)BufferData + 29;
*(PUINT32)(ShellCode + 25) = LoadLibraryWAddress; //адрес loadlibrary вставлен в shellcode
*(PUINT32)(ShellCode + 9) = (UINT32)BufferData + 25;//изменение адреса после call на адрес в целевом пространстве для хранения loaddlladdr
//////////////////////////////////
*(PUINT32)(ShellCode + 21) = ThreadContext.Eip;
*(PUINT32)(ShellCode + 17) = (UINT32)BufferData + 21;//изменение jmp после того, как eip вернется к адресу
if (!WriteProcessMemory(ProcessHandle, BufferData, ShellCode, sizeof(ShellCode), NULL))
{
printf("ошибка записи процесса\n");
return FALSE;
}
ThreadContext.Eip = (UINT32)BufferData;
#endif 
if (!SetThreadContext(ThreadHandle, &ThreadContext))
{
printf("ошибка установки контекста потока\n");
return FALSE;
}
ResumeThread(ThreadHandle);
printf("ShellCode инъекция завершена\r\n");
}
}
CloseHandle(ThreadHandle);
CloseHandle(ProcessHandle);
return TRUE;
}

0x05. Вставка в очередь Apc

  Инъекция Apc на уровне Ring3 не очень стабильна, и мой подход заключается в том, чтобы насильно вставлять объекты Apc в очередь UserMode Apc всех потоков целевого процесса (у потока есть две очереди Apc: Kernel и User) и ждать выполнения функции, зарегистрированной в этом Apc. И только когда поток находится в состоянии alterable, проверяется, есть ли в очереди Apc функции, которые нужно выполнить.

  ps: именно потому, что не известно,哪个线程会处理Apc, поэтому Ring3 уровня Apc инъекция не так эффективна, как другие методы, но инъекция Apc на уровне Ring0还是比较稳定的. Ранее тестирование xp и win10 было успешным, а в win7 при инъекции процесса explorer всегда происходил сбой. Позже, после долгих усилий, было обнаружено, что вставка в итерации线程 с конца до начала не вызывает сбоев Orz

int main()
{
......
ThreadCount = ThreadIdVector.size();
for (INT i = ThreadCount - 1; i >= 0; i--)
{
UINT32 ThreadId = ThreadIdVector[i];
InjectDllByApc(ProcessId, ThreadId);
}
......
}
BOOL InjectDllByApc(IN UINT32 ProcessId, IN UINT32 ThreadId)
{
BOOL bOk = 0;
HANDLE ThreadHandle = OpenThread(THREAD_ALL_ACCESS, FALSE, ThreadId);
HANDLE ProcessHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, ProcessId);
UINT_PTR LoadLibraryAddress = 0;
SIZE_T ReturnLength = 0;
UINT32 DllFullPathLength = (strlen(DllFullPath) + 1);
// Глобально, запрашивать память один раз
if (DllFullPathBufferData == NULL)
{
// Запрос памяти
DllFullPathBufferData = VirtualAllocEx(ProcessHandle, NULL, DllFullPathLength, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
if (DllFullPathBufferData == NULL)
{
CloseHandle(ProcessHandle);
CloseHandle(ThreadHandle);
return FALSE;
}
}
// Избегать неудачной записи之前, повторять запись каждый раз
bOk = WriteProcessMemory(ProcessHandle, DllFullPathBufferData, DllFullPath, strlen(DllFullPath) + 1,
&ReturnLength);
if (bOk == FALSE)
{
CloseHandle(ProcessHandle);
CloseHandle(ThreadHandle);
return FALSE;
}
LoadLibraryAddress = (UINT_PTR)GetProcAddress(GetModuleHandle(L"Kernel32.dll"), "LoadLibraryA");
if (LoadLibraryAddress == NULL)
{
CloseHandle(ProcessHandle);
CloseHandle(ThreadHandle);
return FALSE;
}
__try
{
QueueUserAPC((PAPCFUNC)LoadLibraryAddress, ThreadHandle, (UINT_PTR)DllFullPathBufferData);
}
__except (EXCEPTION_CONTINUE_EXECUTION)
{
}
CloseHandle(ProcessHandle);
CloseHandle(ThreadHandle);
return TRUE;
}

0x06. Редактирование реестра

  Реестровая инъекция можно считать глобальным Hook,毕竟 при создании нового процесса, при загрузке User32.dll автоматически вызывается LoadLibrary для загрузки пути Dll из某个 ключа значений реестра

  Мы заботимся о данном параметре реестра, который называется: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows, мы устанавливаем значение ключа AppInit_DLLs = "Полный путь к Dll", LoadAppInit_Dlls = 1 (позволить системе использовать этот параметр реестра)

  примечание: поскольку инъекция Dll выполняется на ранней стадии создания процесса, необходимо быть особенно внимательным при использовании функций в Dll, так как некоторые библиотеки могут еще не быть загружены.

int main()
{
LSTATUS Status = 0;
WCHAR* wzSubKey = L"SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Windows";
HKEY hKey = NULL;
// Открывать реестр
Status = RegOpenKeyExW(HKEY_LOCAL_MACHINE, // Подключение к основному ключу
wzSubKey, // Адрес имени подключения для открытия
0, // Резерв, передается 0
KEY_ALL_ACCESS, // Способ открытия
&hKey); // Возвращаемый дескриптор подключения
if (Status != ERROR_SUCCESS)
{
return 0;
}
WCHAR* wzValueName = L"AppInit_DLLs";
DWORD dwValueType = 0;
UINT8 ValueData[MAX_PATH] = { 0 };
DWORD dwReturnLength = 0;
// Исследование реестра
Status = RegQueryValueExW(hKey, // Дескриптор подключения
wzValueName, // Название ключа для поиска
NULL, // Резерв
&dwValueType, // Тип данных
ValueData, // Значение ключа
&dwReturnLength);
WCHAR wzDllFullPath[MAX_PATH] = { 0 };
GetCurrentDirectoryW(MAX_PATH, wzDllFullPath);
#ifdef _WIN64
wcscat_s(wzDllFullPath, L"\\x64NormalDll.dll");
#else
wcscat_s(wzDllFullPath, L"\\x86NormalDll.dll");
#endif
// 设置键值
Status = RegSetValueExW(hKey,
wzValueName,
NULL,
dwValueType,
(CONST BYTE*)wzDllFullPath,
(lstrlen(wzDllFullPath) + 1) * sizeof(WCHAR));
if (Status != ERROR_SUCCESS)
{
return 0;
}
wzValueName = L"LoadAppInit_DLLs";
DWORD dwLoadAppInit = 1;
// Исследование реестра
Status = RegQueryValueExW(hKey, wzValueName, NULL, &dwValueType, ValueData, &dwReturnLength);
// 设置键值
Status = RegSetValueExW(hKey, wzValueName, NULL, dwValueType, (CONST BYTE*)&dwLoadAppInit, sizeof(DWORD));
if (Status != ERROR_SUCCESS)
{
return 0;
}
printf("Input Any Key To Resume\r\n");
getchar();
getchar();
// 恢复键值
dwLoadAppInit = 0;
Status = RegQueryValueExW(hKey, wzValueName, NULL, &dwValueType, ValueData, &dwReturnLength);
Status = RegSetValueExW(hKey, wzValueName, NULL, dwValueType, (CONST BYTE*)&dwLoadAppInit, sizeof(DWORD));
wzValueName = L"AppInit_DLLs";
ZeroMemory(wzDllFullPath, (lstrlen(wzDllFullPath) + 1) * sizeof(WCHAR));
Status = RegQueryValueExW(hKey, wzValueName, NULL, &dwValueType, ValueData, &dwReturnLength);
Status = RegSetValueExW(hKey, wzValueName, NULL, dwValueType, (CONST BYTE*)wzDllFullPath, 0);
return 0;
}

0x07.挂钩窗口消息

  挂钩窗口消息使用了MS提供的一个API接口SetWindowsHookEx,他的工作原理是给带窗口的目标进程的某个线程的某个消息挂钩上我们Dll导出的函数,一旦消息触发,则导出函数就会被调用。前面学习到的几种方法归根结底是调用了LoadLibrary,而这个方法并没有。

// 注入exe关键代码 给目标线程的指定消息上下钩,走进Dll导出函数
BOOL Inject(IN UINT32 ThreadId, OUT HHOOK& HookHandle)
{
HMODULE DllModule = LoadLibraryA(DllFullPath);
FARPROC FunctionAddress = GetProcAddress(DllModule, "Sub_1");
HookHandle = SetWindowsHookEx(WH_KEYBOARD, (HOOKPROC)FunctionAddress, DllModule, ThreadId);
if (HookHandle == NULL)
{
return FALSE;
}
return TRUE;
}
// Экспортируемые функции динамической библиотеки
extern "C"
__declspec(dllexport)
VOID Sub_1() // Экспортируемая функция
{
MessageBox(0, 0, 0, 0);
}

0x08. Ремотное ручное выполнение LoadLibrary

  Этот метод был изучен у github под именем ReflevtiveDllInjection иroughly divided into two parts, exe и dll, which are described briefly below.

  exe: В качестве программы-запускника инъекции, в пространстве памяти целевого процесса занимают страницу PAGE_EXECUTE_READWRITE, пишут Dll в пространство памяти целевого процесса в формате файла, затем получают смещение функции "LoadDllByOEP" в файле и вызывают функцию CreateRemoteThread, чтобы заставить целевой процесс выполнить функцию LoadDllByOEP.

  Dll: Самый важный экспортируемый функционал LoadDllByOEP, в которой сначала через таблицу экспортируемых значений модуля ntdll.dll получают адрес функции NtFlushInstructionCache, а затем через таблицу экспортируемых значений Kernel32.dll получают адреса функций LoadLibraryA, GetProcAddress и VirtualAlloc; затем в пространстве памяти процесса заново занимают память, копируют свою структуру PE в память, исправляют IAT и блок редиректов, и в конце вызывают OEP модуля, что завершает ручное реализацию LoadLibrary!

  ps: При написании кода я руководствовался книгой "Windows PE Полное руководство", и у меня появилось новое понимание всей структуры PE. У меня есть强迫症, связанный с использованием циклов for.., и поэтому я полностью выложил этот код.

// InjectDllByOEP.cpp : Определяет точку входа консольного приложения.
//
#include "stdafx.h"
#include <Windows.h>
#include <iostream>
#include <TlHelp32.h>
using namespace std;
BOOL GrantPriviledge(WCHAR* PriviledgeName);
UINT32 GetLoadDllByOEPOffsetInFile(PVOID DllBuffer);
UINT32 RVAToOffset(UINT32 RVA, PIMAGE_NT_HEADERS NtHeader);
BOOL GetProcessIdByProcessImageName(IN WCHAR* wzProcessImageName, OUT UINT32* TargetProcessId);
HANDLE WINAPI LoadRemoteDll(HANDLE ProcessHandle, PVOID ModuleFileBaseAddress, UINT32 ModuleFileSize, LPVOID lParam);
CHAR DllFullPath[MAX_PATH] = { 0 };
int main()
{
// Сначала поднимем права
if (GrantPriviledge(SE_DEBUG_NAME) == FALSE)
{
printf("Ошибка предоставления привилегий\r\n");
}
// Затем получить идентификатор процесса по имени процесса
UINT32 ProcessId = 0;
GetCurrentDirectoryA(MAX_PATH, DllFullPath);
#ifdef _WIN64
// GetProcessIdByProcessImageName(L"Taskmgr.exe", &ProcessId);
GetProcessIdByProcessImageName(L"explorer.exe", &ProcessId);
strcat_s(DllFullPath, "\\x64LoadRemoteDll.dll");
#else
GetProcessIdByProcessImageName(L"notepad++.exe", &ProcessId);
strcat_s(DllFullPath, "\\x86LoadRemoteDll.dll");
#endif
// Получение хендла dll
HANDLE FileHandle = CreateFileA(DllFullPath, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (FileHandle == INVALID_HANDLE_VALUE)
{
printf("Ошибка открытия файла\r\n");
return 0;
}
// Получение длины dll файла
UINT32 FileSize = GetFileSize(FileHandle, NULL);
if (FileSize == INVALID_FILE_SIZE || FileSize == 0)
{
printf("Get File Size Error\r\n");
CloseHandle(FileHandle);
return 0;
}
// Запросить память, сохранить
PVOID FileData = HeapAlloc(GetProcessHeap(), 0, FileSize);
if (FileData == NULL)
{
printf("HeapAlloc Error\r\n");
CloseHandle(FileHandle);
return 0;
}
DWORD ReturnLength = 0;
BOOL bOk = ReadFile(FileHandle, FileData, FileSize, &ReturnLength, NULL);
CloseHandle(FileHandle);
if (bOk == FALSE)
{
printf("ReadFile Error\r\n");
HeapFree(GetProcessHeap(), 0, FileData);
return 0;
}
HANDLE ProcessHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, ProcessId);
if (ProcessHandle == NULL)
{
printf("OpenProcess Error\r\n");
HeapFree(GetProcessHeap(), 0, FileData);
return 0;
}
// Выполнить функцию экспорта Dll LoadDllByOEP, чтобы целевой процесс реализовал функцию LoadLibrary
HANDLE ThreadHandle = LoadRemoteDll(ProcessHandle, FileData, FileSize, NULL);
if (ThreadHandle == NULL)
{
goto _Clear;
}
WaitForSingleObject(ThreadHandle, INFINITE);
_Clear:
if (FileData)
{
HeapFree(GetProcessHeap(), 0, FileData);
}
if (ProcessHandle)
{
CloseHandle(ProcessHandle);
}
return 0;
}
/************************************************************************
* Name : LoadRemoteDll
* Param: ProcessHandle дескриптор процесса (IN)
* Param: ModuleBaseAddress базовый адрес модуля
* Param: ModuleLength размер модуля в файле
* Param: lParam ссылка на модуль
* Ret : HANDLE
* Записать Dll в память целевого процесса в формате файла и выполнить функцию экспорта Dll LoadDllByOEP
//************************************************************************/
HANDLE WINAPI LoadRemoteDll(HANDLE ProcessHandle, PVOID ModuleFileBaseAddress, UINT32 ModuleFileSize, LPVOID lParam)
{
HANDLE ThreadHandle = NULL;
__try
{
if (ProcessHandle == NULL || ModuleFileBaseAddress == NULL || ModuleFileSize == 0)
{
return NULL;
}
// Offset функции экспорта относительно ModuelBaseAddress
UINT32 FunctionOffset = GetLoadDllByOEPOffsetInFile(ModuleFileBaseAddress);
if (FunctionOffset == 0)
{
return NULL;
}
// Заявка памяти в целевом процессе
PVOID RemoteBufferData = VirtualAllocEx(ProcessHandle, NULL, ModuleFileSize, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
if (RemoteBufferData == NULL)
{
return NULL;
}
// Запись файла Dll в память целевого процесса
BOOL bOk = WriteProcessMemory(ProcessHandle, RemoteBufferData, ModuleFileBaseAddress, ModuleFileSize, NULL);
if (bOk == FALSE)
{
return NULL;
}
// Выполнение Dll с помощью LoadDllByOEP в файловом формате
LPTHREAD_START_ROUTINE RemoteThreadCallBack = (LPTHREAD_START_ROUTINE)((PUINT8)RemoteBufferData + FunctionOffset);
ThreadHandle = CreateRemoteThread(ProcessHandle, NULL, 1024 * 1024, RemoteThreadCallBack, lParam, 0, NULL);
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
ThreadHandle = NULL;
}
return ThreadHandle;
}
/************************************************************************
* Name : LoadRemoteDll
* Param: ProcessHandle обработчик процесса
* Ret : HANDLE
* Получить смещение LoadDllByOEP в файле Dll
//************************************************************************/
UINT32 GetLoadDllByOEPOffsetInFile(PVOID DllBuffer)
{
UINT_PTR BaseAddress = (UINT_PTR)DllBuffer;
PIMAGE_DOS_HEADER DosHeader = NULL;
PIMAGE_NT_HEADERS NtHeader = NULL;
DosHeader = (PIMAGE_DOS_HEADER)BaseAddress;
NtHeader = (PIMAGE_NT_HEADERS)((PUINT8)BaseAddress + DosHeader->e_lfanew);
/*
#define IMAGE_NT_OPTIONAL_HDR32_MAGIC 0x10b
#define IMAGE_NT_OPTIONAL_HDR64_MAGIC 0x20b
#define IMAGE_ROM_OPTIONAL_HDR_MAGIC 0x107
*/
if (NtHeader->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR32_MAGIC) // pe32
{
}
else if (NtHeader->OptionalHeader.Magic == IMAGE_NT_OPTIONAL_HDR64_MAGIC) // pe64
{
}
else
{
return 0;
}
UINT32 ExportDirectoryRVA = NtHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress;
PIMAGE_EXPORT_DIRECTORY ExportDirectory = (PIMAGE_EXPORT_DIRECTORY)((PUINT8)BaseAddress + RVAToOffset(ExportDirectoryRVA, NtHeader));
UINT32 AddressOfNamesRVA = ExportDirectory->AddressOfNames;
PUINT32 AddressOfNames = (PUINT32)((PUINT8)BaseAddress + RVAToOffset(AddressOfNamesRVA, NtHeader));
UINT32 AddressOfFunctionsRVA = ExportDirectory->AddressOfFunctions;
PUINT32 AddressOfFunctions = (PUINT32)((PUINT8)BaseAddress + RVAToOffset(AddressOfFunctionsRVA, NtHeader));
UINT32 AddressOfNameOrdinalsRVA = ExportDirectory->AddressOfNameOrdinals;
PUINT16 AddressOfNameOrdinals = (PUINT16)((PUINT8)BaseAddress + RVAToOffset(AddressOfNameOrdinalsRVA, NtHeader));
for (UINT32 i = 0; i < ExportDirectory->NumberOfFunctions; i++)
{
CHAR* ExportFunctionName = (CHAR*)((PUINT8)BaseAddress + RVAToOffset(*AddressOfNames, NtHeader));
if (strstr(ExportFunctionName, "LoadDllByOEP") != NULL)
{
UINT16 ExportFunctionOrdinals = AddressOfNameOrdinals[i];
return RVAToOffset(AddressOfFunctions[ExportFunctionOrdinals], NtHeader);
}
}
return 0;
}
/************************************************************************
* Name : RVAToOffset
* Param: RVA смещение в памяти
* Param: NtHeader заголовок Nt
* Ret : UINT32
* Преобразование смещения в памяти в смещение в файле
//************************************************************************/
UINT32 RVAToOffset(UINT32 RVA, PIMAGE_NT_HEADERS NtHeader)
{
UINT32 i = 0;
PIMAGE_SECTION_HEADER SectionHeader = NULL;
SectionHeader = IMAGE_FIRST_SECTION(NtHeader);
if (RVA < SectionHeader[0].PointerToRawData)
{
return RVA;
}
for (i = 0; i < NtHeader->FileHeader.NumberOfSections; i++)
{
if (RVA >= SectionHeader[i].VirtualAddress && RVA < (SectionHeader[i].VirtualAddress + SectionHeader[i].SizeOfRawData))
{
return (RVA - SectionHeader[i].VirtualAddress + SectionHeader[i].PointerToRawData);
}
}
return 0;
}
/************************************************************************
* Название: GetProcessIdByProcessImageName
* Параметр: wzProcessImageName Имя изображения процесса (IN)
* Параметр: TargetProcessId Идентификатор процесса (OUT)
* Ret : BOOLEAN
* Получение идентификатора процесса по имени изображения процесса с помощью функций ToolHelp
//************************************************************************/
BOOL GetProcessIdByProcessImageName(IN WCHAR* wzProcessImageName, OUT UINT32* TargetProcessId)
{
HANDLE ProcessSnapshotHandle = NULL;
PROCESSENTRY32 ProcessEntry32 = { 0 };
ProcessEntry32.dwSize = sizeof(PROCESSENTRY32); // Инициализация структуры PROCESSENTRY32
ProcessSnapshotHandle = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0); // Снимок всех процессов системы
if (ProcessSnapshotHandle == INVALID_HANDLE_VALUE)
{
return FALSE;
}
Process32First(ProcessSnapshotHandle, &ProcessEntry32); // Найден первый
do
{
if (lstrcmpi(ProcessEntry32.szExeFile, wzProcessImageName) == 0) // Не учитывает регистр
{
*TargetProcessId = ProcessEntry32.th32ProcessID;
break;
}
} while (Process32Next(ProcessSnapshotHandle, &ProcessEntry32));
CloseHandle(ProcessSnapshotHandle);
ProcessSnapshotHandle = NULL;
return TRUE;
}
/************************************************************************
* Name : GrantPriviledge
* Param: PriviledgeName прав, которые необходимо увеличить
* Ret : BOOLEAN
* Увеличивает необходимые права
//************************************************************************/
BOOL GrantPriviledge(WCHAR* PriviledgeName)
{
TOKEN_PRIVILEGES TokenPrivileges, OldPrivileges;
DWORD dwReturnLength = sizeof(OldPrivileges);
HANDLE TokenHandle = NULL;
LUID uID;
// Открывает правовой тег
if (!OpenThreadToken(GetCurrentThread(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, FALSE, &TokenHandle))
{
if (GetLastError() != ERROR_NO_TOKEN)
{
return FALSE;
}
if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &TokenHandle))
{
return FALSE;
}
}
if (!LookupPrivilegeValue(NULL, PriviledgeName, &uID)) // Поиск uID по имени права
{
CloseHandle(TokenHandle);
return FALSE;
}
TokenPrivileges.PrivilegeCount = 1; // Количество прав, которые нужно повысить
TokenPrivileges.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; // Динамический массив, размер массива зависит от значения Count
TokenPrivileges.Privileges[0].Luid = uID;
// Здесь мы производим настройку прав
if (!AdjustTokenPrivileges(TokenHandle, FALSE, &TokenPrivileges, sizeof(TOKEN_PRIVILEGES), &OldPrivileges, &dwReturnLength))
{
CloseHandle(TokenHandle);
return FALSE;
}
// Успешно
CloseHandle(TokenHandle);
return TRUE;
}
// LoadRemoteDll.h
#include <Windows.h>
#include <intrin.h>
#ifdef LOADREMOTEDLL_EXPORTS
#define LOADREMOTEDLL_API __declspec(dllexport)
#else
#define LOADREMOTEDLL_API __declspec(dllimport)
#endif
#define KERNEL32DLL_HASH 0x6A4ABC5B
#define NTDLLDLL_HASH 0x3CFA685D
#define LOADLIBRARYA_HASH 0xEC0E4E8E
#define GETPROCADDRESS_HASH 0x7C0DFCAA
#define VIRTUALALLOC_HASH 0x91AFCA54
#define NTFLUSHINSTRUCTIONCACHE_HASH 0x534C0AB8
#define IMAGE_REL_BASED_ARM_MOV32A 5
#define IMAGE_REL_BASED_ARM_MOV32T 7
#define HASH_KEY 13
#pragma intrinsic( _rotr )
__forceinline UINT32 ror(UINT32 d)
{
return _rotr(d, HASH_KEY);
}
__forceinline UINT32 hash(char * c)
{
register UINT32 h = 0;
do
{
h = ror(h);
h += *c;
} while (*++c);
return h;
}
//////////////////////////////////////////////////////////////////////////
typedef struct _UNICODE_STRING
{
USHORT Length;
USHORT MaximumLength;
PWSTR Buffer;
}{UNICODE_STRING, *PUNICODE_STRING;
typedef struct _PEB_LDR_DATA_WIN7_X64
{
UINT32 Length;
UINT8 Initialized;
UINT8 _PADDING0_[0x3];
PVOID SsHandle;
LIST_ENTRY InLoadOrderModuleList;
LIST_ENTRY InMemoryOrderModuleList;
LIST_ENTRY InInitializationOrderModuleList;
PVOID EntryInProgress;
UINT8 ShutdownInProgress;
UINT8 _PADDING1_[0x7];
PVOID ShutdownThreadId;
}{PEB_LDR_DATA_WIN7_X64, *PPEB_LDR_DATA_WIN7_X64;
typedef struct _PEB_LDR_DATA_WINXP_X86
{
UINT32 Length;
UINT8 Initialized;
UINT8 _PADDING0_[0x3];
PVOID SsHandle;
LIST_ENTRY InLoadOrderModuleList;
LIST_ENTRY InMemoryOrderModuleList;
LIST_ENTRY InInitializationOrderModuleList;
PVOID EntryInProgress;
PEB_LDR_DATA_WINXP_X86, *PPEB_LDR_DATA_WINXP_X86;
#ifdef _WIN64
#define PPEB_LDR_DATA PEB_LDR_DATA_WIN7_X64
#define PEB_LDR_DATA PEB_LDR_DATA_WIN7_X64
#else 
#define PPEB_LDR_DATA PPEB_LDR_DATA_WINXP_X86
#define PEB_LDR_DATA PEB_LDR_DATA_WINXP_X86
#endif
typedef struct _CURDIR
{
UNICODE_STRING DosPath;
HANDLE Handle;
} CURDIR, *PCURDIR;
typedef struct _RTL_USER_PROCESS_PARAMETERS_WINXP_X86 {
UINT32 MaximumLength;
UINT32 Length;
UINT32 Flags;
UINT32 DebugFlags;
HANDLE ConsoleHandle;
UINT32 ConsoleFlags;
HANDLE StandardInput;
HANDLE StandardOutput;
HANDLE StandardError;
CURDIR CurrentDirectory; // ProcessParameters
UNICODE_STRING DllPath; // ProcessParameters
UNICODE_STRING ImagePathName; // ProcessParameters
UNICODE_STRING CommandLine; // ProcessParameters
PVOID Environment;
UINT32 StartingX;
UINT32 StartingY;
UINT32 CountX;
UINT32 CountY;
UINT32 CountCharsX;
UINT32 CountCharsY;
UINT32 FillAttribute;
UINT32 WindowFlags;
UINT32 ShowWindowFlags;
UNICODE_STRING WindowTitle;
UNICODE_STRING DesktopInfo;
UNICODE_STRING ShellInfo;
UNICODE_STRING RuntimeData;
UINT32 CurrentDirectores[8];
} RTL_USER_PROCESS_PARAMETERS_WINXP_X86, *PRTL_USER_PROCESS_PARAMETERS_WINXP_X86;
typedef struct _RTL_USER_PROCESS_PARAMETERS_WIN7_X64 {
UINT32 MaximumLength;
UINT32 Length;
UINT32 Flags;
UINT32 DebugFlags;
HANDLE ConsoleHandle;
UINT32 ConsoleFlags;
HANDLE StandardInput;
HANDLE StandardOutput;
HANDLE StandardError;
CURDIR CurrentDirectory; // ProcessParameters
UNICODE_STRING DllPath; // ProcessParameters
UNICODE_STRING ImagePathName; // ProcessParameters
UNICODE_STRING CommandLine; // ProcessParameters
PVOID Environment;
UINT32 StartingX;
UINT32 StartingY;
UINT32 CountX;
UINT32 CountY;
UINT32 CountCharsX;
UINT32 CountCharsY;
UINT32 FillAttribute;
UINT32 WindowFlags;
UINT32 ShowWindowFlags;
UNICODE_STRING WindowTitle;
UNICODE_STRING DesktopInfo;
UNICODE_STRING ShellInfo;
UNICODE_STRING RuntimeData;
UINT32 CurrentDirectores[8];
UINT64 EnvironmentSize;
UINT64 EnvironmentVersion;
}
#ifdef _WIN64
#define PRTL_USER_PROCESS_PARAMETERS PRTL_USER_PROCESS_PARAMETERS_WIN7_X64
#define RTL_USER_PROCESS_PARAMETERS RTL_USER_PROCESS_PARAMETERS_WIN7_X64
#else 
#define PRTL_USER_PROCESS_PARAMETERS PRTL_USER_PROCESS_PARAMETERS_WINXP_X86
#define RTL_USER_PROCESS_PARAMETERS RTL_USER_PROCESS_PARAMETERS_WINXP_X86
#endif
#define GDI_HANDLE_BUFFER_SIZE32 34
#define GDI_HANDLE_BUFFER_SIZE64 60
#ifndef _WIN64
#define GDI_HANDLE_BUFFER_SIZE GDI_HANDLE_BUFFER_SIZE32
#else
#define GDI_HANDLE_BUFFER_SIZE GDI_HANDLE_BUFFER_SIZE64
#endif
typedef UINT32 GDI_HANDLE_BUFFER[GDI_HANDLE_BUFFER_SIZE];
// PEB структура
typedef struct _PEB
{
BOOLEAN InheritedAddressSpace;
BOOLEAN ReadImageFileExecOptions;
BOOLEAN BeingDebugged;
union
{
BOOLEAN BitField;
struct
{
BOOLEAN ImageUsesLargePages : 1;
BOOLEAN IsProtectedProcess : 1;
BOOLEAN IsLegacyProcess : 1;
BOOLEAN IsImageDynamicallyRelocated : 1;
BOOLEAN SkipPatchingUser32Forwarders : 1;
BOOLEAN IsPackagedProcess : 1;
BOOLEAN IsAppContainer : 1;
BOOLEAN SpareBits : 1;
};
};
HANDLE Mutant;
PVOID ImageBaseAddress;
PPEB_LDR_DATA Ldr;
PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
PVOID SubSystemData;
PVOID ProcessHeap;
PRTL_CRITICAL_SECTION FastPebLock;
PVOID AtlThunkSListPtr;
PVOID IFEOKey;
union
{
UINT32 CrossProcessFlags;
struct
{
UINT32 ProcessInJob : 1;
UINT32 ProcessInitializing : 1;
UINT32 ProcessUsingVEH : 1;
UINT32 ProcessUsingVCH : 1;
UINT32 ProcessUsingFTH : 1;
UINT32 ReservedBits0 : 27;
};
UINT32 EnvironmentUpdateCount;
};
union
{
PVOID KernelCallbackTable;
PVOID UserSharedInfoPtr;
};
UINT32 SystemReserved[1];
UINT32 AtlThunkSListPtr32;
PVOID ApiSetMap;
UINT32 TlsExpansionCounter;
PVOID TlsBitmap;
UINT32 TlsBitmapBits[2];
PVOID ReadOnlySharedMemoryBase;
PVOID HotpatchInformation;
PVOID* ReadOnlyStaticServerData;
PVOID AnsiCodePageData;
PVOID OemCodePageData;
PVOID UnicodeCaseTableData;
UINT32 NumberOfProcessors;
UINT32 NtGlobalFlag;
LARGE_INTEGER CriticalSectionTimeout;
SIZE_T HeapSegmentReserve;
SIZE_T HeapSegmentCommit;
SIZE_T HeapDeCommitTotalFreeThreshold;
SIZE_T HeapDeCommitFreeBlockThreshold;
UINT32 NumberOfHeaps;
UINT32 MaximumNumberOfHeaps;
PVOID* ProcessHeaps;
PVOID GdiSharedHandleTable;
PVOID ProcessStarterHelper;
UINT32 GdiDCAttributeList;
PRTL_CRITICAL_SECTION LoaderLock;
UINT32 OSMajorVersion;
UINT32 OSMinorVersion;
UINT16 OSBuildNumber;
UINT16 OSCSDVersion;
UINT32 OSPlatformId;
UINT32 ImageSubsystem;
UINT32 ImageSubsystemMajorVersion;
UINT32 ImageSubsystemMinorVersion;
UINT_PTR ImageProcessAffinityMask;
GDI_HANDLE_BUFFER GdiHandleBuffer;
PVOID PostProcessInitRoutine;
PVOID TlsExpansionBitmap;
UINT32 TlsExpansionBitmapBits[32];
UINT32 SessionId;
ULARGE_INTEGER AppCompatFlags;
ULARGE_INTEGER AppCompatFlagsUser;
PVOID pShimData;
PVOID AppCompatInfo;
UNICODE_STRING CSDVersion;
PVOID ActivationContextData;
PVOID ProcessAssemblyStorageMap;
PVOID SystemDefaultActivationContextData;
PVOID SystemAssemblyStorageMap;
SIZE_T MinimumStackCommit;
PVOID* FlsCallback;
LIST_ENTRY FlsListHead;
PVOID FlsBitmap;
UINT32 FlsBitmapBits[FLS_MAXIMUM_AVAILABLE / (sizeof(UINT32) * 8)];
UINT32 FlsHighIndex;
PVOID WerRegistrationData;
PVOID WerShipAssertPtr;
PVOID pContextData;
PVOID pImageHeaderHash;
union
{
UINT32 TracingFlags;
struct
{
UINT32 HeapTracingEnabled : 1;
UINT32 CritSecTracingEnabled : 1;
UINT32 LibLoaderTracingEnabled : 1;
UINT32 SpareTracingBits : 29;
};
};
UINT64 CsrServerReadOnlySharedMemoryBase;
} PEB, *PPEB;
// Ldr три цепочки структуры
typedef struct _LDR_DATA_TABLE_ENTRY {
LIST_ENTRY InLoadOrderLinks;
LIST_ENTRY InMemoryOrderLinks;
LIST_ENTRY InInitializationOrderLinks;
PVOID DllBase;
PVOID EntryPoint;
UINT32 SizeOfImage;
UNICODE_STRING FullDllName;
UNICODE_STRING BaseDllName;
UINT32 Flags;
UINT16 LoadCount;
UINT16 TlsIndex;
union {
LIST_ENTRY HashLinks;
struct {
PVOID SectionPointer;
UINT32 CheckSum;
};
};
union {
struct {
UINT32 TimeDateStamp;
};
struct {
PVOID LoadedImports;
};
};
struct _ACTIVATION_CONTEXT * EntryPointActivationContext;
PVOID PatchInformation;
} LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY;
typedef const struct _LDR_DATA_TABLE_ENTRY *PCLDR_DATA_TABLE_ENTRY;
LOADREMOTEDLL_API UINT_PTR WINAPI LoadDllByOEP(PVOID lParam);
// LoadRemoteDll.cpp
// LoadRemoteDll.cpp : Определяет出口 функции DLL приложения.
//
#include "stdafx.h"
#include "LoadRemoteDll.h"
#pragma intrinsic(_ReturnAddress)
__declspec(noinline)
UINT_PTR caller()
{
return (UINT_PTR)_ReturnAddress(); // #include <intrin.h>
}
typedef
HMODULE
(WINAPI * pfnLoadLibraryA)(LPCSTR lpLibFileName);
typedef
FARPROC
(WINAPI * pfnGetProcAddress)(HMODULE hModule, LPCSTR lpProcName);
typedef
LPVOID
(WINAPI * pfnVirtualAlloc)(LPVOID lpAddress, SIZE_T dwSize, DWORD flAllocationType, DWORD flProtect);
typedef
LONG // NTSTATUS
(NTAPI * pfnNtFlushInstructionCache)(HANDLE ProcessHandle, PVOID BaseAddress, SIZE_T Length);
typedef
BOOL
(APIENTRY * pfnDllMain)(HMODULE hModule, DWORD ul_reason_for_call, LPVOID lpReserved);
LOADREMOTEDLL_API UINT_PTR WINAPI LoadDllByOEP(PVOID lParam)
{
UINT_PTR LibraryAddress = 0;
PIMAGE_DOS_HEADER DosHeader = NULL;
PIMAGE_NT_HEADERS NtHeader = NULL;
pfnLoadLibraryA LoadLibraryAAddress = NULL;
pfnGetProcAddress GetProcAddressAddress = NULL;
pfnVirtualAlloc VirtualAllocAddress = NULL;
pfnNtFlushInstructionCache NtFlushInstructionCacheAddress = NULL;
LibraryAddress = caller(); // Получение адреса следующей инструкции, на самом деле это для получения текущего адреса инструкции, чтобы предоставить точку départ для поиска заголовка PE позже
DosHeader = (PIMAGE_DOS_HEADER)LibraryAddress;
while (TRUE)
{
if (DosHeader->e_magic == IMAGE_DOS_SIGNATURE &&
DosHeader->e_lfanew >= sizeof(IMAGE_DOS_HEADER) &&
DosHeader->e_lfanew < 1024)
{
NtHeader = (PIMAGE_NT_HEADERS)((PUINT8)LibraryAddress + DosHeader->e_lfanew);
if (NtHeader->Signature == IMAGE_NT_SIGNATURE)
{
break;
}
}
LibraryAddress--;
DosHeader = (PIMAGE_DOS_HEADER)LibraryAddress;
}
// Получение PEB
#ifdef _WIN64
PPEB Peb = (PPEB)__readgsqword(0x60);
#else
PPEB Peb = (PPEB)__readfsdword(0x30);
#endif
PPEB_LDR_DATA Ldr = Peb->Ldr;
// 1. Получить адрес функции из таблицы экспорта Dll
for (PLIST_ENTRY TravelListEntry = (PLIST_ENTRY)Ldr->InLoadOrderModuleList.Flink;
TravelListEntry != &Ldr->InLoadOrderModuleList; // Пустой узел
TravelListEntry = TravelListEntry->Flink)
{
PLDR_DATA_TABLE_ENTRY LdrDataTableEntry = (PLDR_DATA_TABLE_ENTRY)TravelListEntry;
UINT32 FunctionCount = 0;
// WCHAR* DllName = (WCHAR*)LdrDataTableEntry->BaseDllName.Buffer;
UINT_PTR DllName = (UINT_PTR)LdrDataTableEntry->BaseDllName.Buffer;
UINT32 DllLength = LdrDataTableEntry->BaseDllName.Length;
UINT_PTR DllBaseAddress = (UINT_PTR)LdrDataTableEntry->DllBase;
DosHeader = (PIMAGE_DOS_HEADER)DllBaseAddress;
NtHeader = (PIMAGE_NT_HEADERS)((PUINT8)DllBaseAddress + DosHeader->e_lfanew);
IMAGE_DATA_DIRECTORY ExportDataDirectory = (IMAGE_DATA_DIRECTORY)(NtHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]);
PIMAGE_EXPORT_DIRECTORY ExportDirectory = (PIMAGE_EXPORT_DIRECTORY)((PUINT8)DllBaseAddress + ExportDataDirectory.VirtualAddress);
PUINT32 AddressOfFunctions = (PUINT32)((PUINT8)DllBaseAddress + ExportDirectory->AddressOfFunctions);
PUINT32 AddressOfNames = (PUINT32)((PUINT8)DllBaseAddress + ExportDirectory->AddressOfNames);
PUINT16 AddressOfNameOrdinals = (PUINT16)((PUINT8)DllBaseAddress + ExportDirectory->AddressOfNameOrdinals);
UINT16 Ordinal = 0;
UINT_PTR ExportFunctionAddress = 0;
UINT32 HashValue = 0;
// Преобразование имени Dll в значение Hash
do
{
HashValue = ror((UINT32)HashValue);
if (*((PUINT8)DllName) >= 'a')
{
HashValue += *((PUINT8)DllName) - 0x20;
}
else
{
HashValue += *((PUINT8)DllName);
}
DllName++;
} while (--DllLength);
if (HashValue == KERNEL32DLL_HASH)
{
FunctionCount = 3;
for (INT i = 0; i < ExportDirectory->NumberOfFunctions; i++)
{
if (FunctionCount == 0)
{
break;
}
CHAR* szExportFunctionName = (CHAR*)((PUINT8)DllBaseAddress + AddressOfNames[i]);
HashValue = hash(szExportFunctionName);
if (HashValue == LOADLIBRARYA_HASH)
{
Ordinal = AddressOfNameOrdinals[i];
LoadLibraryAAddress = (pfnLoadLibraryA)((PUINT8)DllBaseAddress + AddressOfFunctions[Ordinal]);
FunctionCount--;
}
else if (HashValue == GETPROCADDRESS_HASH)
{
Ordinal = AddressOfNameOrdinals[i];
GetProcAddressAddress = (pfnGetProcAddress)((PUINT8)DllBaseAddress + AddressOfFunctions[Ordinal]);
FunctionCount--;
}
else if (HashValue == VIRTUALALLOC_HASH)
{
Ordinal = AddressOfNameOrdinals[i];
VirtualAllocAddress = (pfnVirtualAlloc)((PUINT8)DllBaseAddress + AddressOfFunctions[Ordinal]);
FunctionCount--;
}
}
}
else if (HashValue == NTDLLDLL_HASH)
{
FunctionCount = 1;
for (INT i = 0; i < ExportDirectory->NumberOfFunctions; i++)
{
if (FunctionCount == 0)
{
break;
}
CHAR* szExportFunctionName = (CHAR*)((PUINT8)DllBaseAddress + AddressOfNames[i]);
HashValue = hash(szExportFunctionName);
if (HashValue == NTFLUSHINSTRUCTIONCACHE_HASH)
{
Ordinal = AddressOfNameOrdinals[i];
NtFlushInstructionCacheAddress = (pfnNtFlushInstructionCache)((PUINT8)DllBaseAddress + AddressOfFunctions[Ordinal]);
FunctionCount--;
}
}
}
if (LoadLibraryAAddress != NULL &&
GetProcAddressAddress != NULL &&
VirtualAllocAddress != NULL &&
NtFlushInstructionCacheAddress != NULL)
{
break;
}
}
// 2. Запрашиваем память, перезагружаем наш Dll
// Обновляем DosHeader и NtHeader снова
DosHeader = (PIMAGE_DOS_HEADER)LibraryAddress;
NtHeader = (PIMAGE_NT_HEADERS)((PUINT8)LibraryAddress + DosHeader->e_lfanew);
// Повторно запрашиваем память (SizeOfImage - это размер PE в памяти)
/* _asm
{
int 3;
}
*/
// Этот самостоятельно полученный указатель головы не должен перемещаться без разрешения, используйте переменную для замены
UINT_PTR NewBaseAddress = (UINT_PTR)VirtualAllocAddress(NULL, NtHeader->OptionalHeader.SizeOfImage, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
UINT_PTR OldPtr = LibraryAddress;
UINT_PTR BasePtr = NewBaseAddress;
// 2.1 Сначала копируем заголовок + таблицу разделов
UINT32 SizeOfHeaders = NtHeader->OptionalHeader.SizeOfHeaders;
while (SizeOfHeaders--)
{
*(PUINT8)BasePtr++ = *(PUINT8)OldPtr++;
}
// memcpy((PVOID)NewBaseAddress, (PVOID)LibraryAddress, NtHeader->OptionalHeader.SizeOfHeaders);
/*
PIMAGE_SECTION_HEADER SectionHeader = (PIMAGE_SECTION_HEADER)((PUINT8)&NtHeader->OptionalHeader + NtHeader->FileHeader.SizeOfOptionalHeader);
UINT32 NumberOfSections = NtHeader->FileHeader.NumberOfSections;
while (NumberOfSections--)
{
UINT_PTR NewSectionAddress = (UINT_PTR)((PUINT8)NewBaseAddress + SectionHeader->VirtualAddress);
UINT_PTR OldSectionAddress = (UINT_PTR)((PUINT8)LibraryAddress + SectionHeader->PointerToRawData);
UINT32 SizeOfRawData = SectionHeader->SizeOfRawData;
while (SizeOfRawData--)
{
*(PUINT8)NewSectionAddress++ = *(PUINT8)OldSectionAddress++;
}
SectionHeader = (PIMAGE_SECTION_HEADER)((PUINT8)SectionHeader + sizeof(IMAGE_SECTION_HEADER));
}
*/
// 2.2 Копирование раздела
PIMAGE_SECTION_HEADER SectionHeader = IMAGE_FIRST_SECTION(NtHeader);
for (INT i = 0; i < NtHeader->FileHeader.NumberOfSections; i++)
{
if (SectionHeader[i].VirtualAddress == 0 || SectionHeader[i].SizeOfRawData == 0) // В разделе нет данных
{
continue;
}
// Определение位置的 раздела в памяти
UINT_PTR NewSectionAddress = (UINT_PTR)((PUINT8)NewBaseAddress + SectionHeader[i].VirtualAddress);
UINT_PTR OldSectionAddress = (UINT_PTR)((PUINT8)LibraryAddress + SectionHeader[i].PointerToRawData);
// Копирование данных раздела в виртуальную память
UINT32 SizeOfRawData = SectionHeader[i].SizeOfRawData;
while (SizeOfRawData--)
{
*(PUINT8)NewSectionAddress++ = *(PUINT8)OldSectionAddress++;
}
//memcpy(SectionAddress, (PVOID)((PUINT8)LibraryAddress + SectionHeader[i].PointerToRawData), SectionHeader[i].SizeOfRawData);
}
// 2.3 Исправление таблицы импорта (IAT)
IMAGE_DATA_DIRECTORY ImportDataDirectory = (IMAGE_DATA_DIRECTORY)(NtHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT]);
PIMAGE_IMPORT_DESCRIPTOR ImportDescriptor = (PIMAGE_IMPORT_DESCRIPTOR)((PUINT8)NewBaseAddress + ImportDataDirectory.VirtualAddress);
/* 
_asm
{
int 3;
}
*/
/*
while (ImportDescriptor->Characteristics != 0)
{
PIMAGE_THUNK_DATA FirstThunk = (PIMAGE_THUNK_DATA)((PUINT8)NewBaseAddress + ImportDescriptor->FirstThunk);
PIMAGE_THUNK_DATA OriginalFirstThunk = (PIMAGE_THUNK_DATA)((PUINT8)NewBaseAddress + ImportDescriptor->OriginalFirstThunk);
// Получение имени импортируемого модуля
// char szModuleName[MAX_PATH] = { 0 };
PCHAR ModuleName = (PCHAR)((PUINT8)NewBaseAddress + ImportDescriptor->Name);
HMODULE Dll = LoadLibraryAAddress(ModuleName);
UINT_PTR АдресФункции = 0;
for (INT i = 0; OriginalFirstThunk[i].u1.Function != 0; i++)
{
if (IMAGE_SNAP_BY_ORDINAL(OriginalFirstThunk[i].u1.Ordinal))
{
FunctionAddress = (UINT_PTR)GetProcAddressAddress(Dll, MAKEINTRESOURCEA((IMAGE_ORDINAL(OriginalFirstThunk[i].u1.Ordinal))));
}
else
{
PIMAGE_IMPORT_BY_NAME ImageImportByName = (PIMAGE_IMPORT_BY_NAME)((PUINT8)NewBaseAddress + OriginalFirstThunk[i].u1.AddressOfData);
FunctionAddress = (UINT_PTR)GetProcAddressAddress(Dll, (CHAR*)ImageImportByName->Name); // Получение адреса функции по имени
}
FirstThunk[i].u1.Function = АдресФункции;
}
ImportDescriptor = (PIMAGE_IMPORT_DESCRIPTOR)((PUINT8)ImportDescriptor + sizeof(IMAGE_IMPORT_DESCRIPTOR));
}
*/
for (INT i = 0; ImportDescriptor[i].Name != NULL; i++)
{
// Загрузка динамической библиотеки импорта
HMODULE Dll = LoadLibraryAAddress((const CHAR*)((PUINT8)NewBaseAddress + ImportDescriptor[i].Name));
PIMAGE_THUNK_DATA OriginalFirstThunk = (PIMAGE_THUNK_DATA)((PUINT8)NewBaseAddress + ImportDescriptor[i].OriginalFirstThunk);
PIMAGE_THUNK_DATA FirstThunk = (PIMAGE_THUNK_DATA)((PUINT8)NewBaseAddress + ImportDescriptor[i].FirstThunk);
UINT_PTR АдресФункции = 0;
// Пробегаем по каждой функции импортируемого модуля
for (INT j = 0; OriginalFirstThunk[j].u1.Function; j++)
{
if (&OriginalFirstThunk[j] && IMAGE_SNAP_BY_ORDINAL(OriginalFirstThunk[j].u1.Ordinal))
{
// Номеримпорта ----> Здесь напрямую из таблицы экспортов Dll находим адрес функции
// АдресФункции = (UINT_PTR)GetProcAddressAddress(Dll, MAKEINTRESOURCEA((IMAGE_ORDINAL(OriginalFirstThunk[j].u1.Ordinal)))); // Удалив наибольший бит, получаем номер
DosHeader = (PIMAGE_DOS_HEADER)Dll;
NtHeader = (PIMAGE_NT_HEADERS)((PUINT8)Dll + DosHeader->e_lfanew);
PIMAGE_EXPORT_DIRECTORY ExportDirectory = (PIMAGE_EXPORT_DIRECTORY)((PUINT8)Dll + NtHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress);
// Массив RVA адресов функций экспорта
PUINT32 AddressOfFunctions = (PUINT32)((PUINT8)Dll + ExportDirectory->AddressOfFunctions);
UINT16 Ordinal = IMAGE_ORDINAL(OriginalFirstThunk[j].u1.Ordinal - ExportDirectory->Base); // Номер функции экспорта - Base(начальное значение номера функции экспорта) = порядковый номер функции в таблице адресов функций
FunctionAddress = (UINT_PTR)((PUINT8)Dll + AddressOfFunctions[Ordinal]);
}
else
{
// Импорт имен
PIMAGE_IMPORT_BY_NAME ImageImportByName = (PIMAGE_IMPORT_BY_NAME)((PUINT8)NewBaseAddress + OriginalFirstThunk[j].u1.AddressOfData);
FunctionAddress = (UINT_PTR)GetProcAddressAddress(Dll, (CHAR*)ImageImportByName->Name); // Получение адреса функции по имени
}
// Обновление IAT
FirstThunk[j].u1.Function = FunctionAddress;
}
}
// 2.4 Исправление таблицы редиректов
DosHeader = (PIMAGE_DOS_HEADER)LibraryAddress;
NtHeader = (PIMAGE_NT_HEADERS)((PUINT8)LibraryAddress + DosHeader->e_lfanew);
// UINT_PTR Delta = NewBaseAddress - NtHeader->OptionalHeader.ImageBase;
IMAGE_DATA_DIRECTORY BaseRelocDataDirectory = (IMAGE_DATA_DIRECTORY)(NtHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC]);
// Имеется ли таблица редиректов
if (BaseRelocDataDirectory.Size != 0)
{
PIMAGE_BASE_RELOCATION BaseRelocation = (PIMAGE_BASE_RELOCATION)((PUINT8)NewBaseAddress + BaseRelocDataDirectory.VirtualAddress);
while (BaseRelocation->SizeOfBlock != 0)
{
typedef struct _IMAGE_RELOC
{
UINT16 Offset : 12; // Низкие 12 бита --- смещение
UINT16 Type : 4; // Высокие 4 бита --- тип
} IMAGE_RELOC, *PIMAGE_RELOC;
// Определяем блок редиректов
PIMAGE_RELOC RelocationBlock = (PIMAGE_RELOC)((PUINT8)BaseRelocation + sizeof(IMAGE_BASE_RELOCATION));
// Рассчитываем количество нужных для исправления позиций редиректов
UINT32 NumberOfRelocations = (BaseRelocation->SizeOfBlock - sizeof(IMAGE_BASE_RELOCATION)) / sizeof(UINT16);
for (INT i = 0; i < NumberOfRelocations; i++)
{
if (RelocationBlock[i].Type == IMAGE_REL_BASED_DIR64)
{
// 64 бита
PUINT64 Address = (PUINT64)((PUINT8)NewBaseAddress + BaseRelocation->VirtualAddress + RelocationBlock[i].Offset);
UINT64 Delta = (UINT64)NewBaseAddress - NtHeader->OptionalHeader.ImageBase;
*Address += Delta;
}
else if (RelocationBlock[i].Type == IMAGE_REL_BASED_HIGHLOW)
{
// 32 бита
PUINT32 Address = (PUINT32)((PUINT8)NewBaseAddress + BaseRelocation->VirtualAddress + (RelocationBlock[i].Offset));
UINT32 Delta = (UINT32)NewBaseAddress - NtHeader->OptionalHeader.ImageBase;
*Address += Delta;
}
}
// Перейти к следующей таблице редиректов
BaseRelocation = (PIMAGE_BASE_RELOCATION)((PUINT8)BaseRelocation + BaseRelocation->SizeOfBlock);
}
}
// 3. Получение OEP модуля
UINT_PTR AddressOfEntryPoint = (UINT_PTR)((PUINT8)NewBaseAddress + NtHeader->OptionalHeader.AddressOfEntryPoint);
NtFlushInstructionCacheAddress(INVALID_HANDLE_VALUE, NULL, 0);
// Вызов через OEP для вызова DllMain
((pfnDllMain)AddressOfEntryPoint)((HMODULE)NewBaseAddress, DLL_PROCESS_ATTACH, lParam);
/* _asm
{
int 3;
}
*/
return AddressOfEntryPoint;
}
// dllmain.cpp : определяет точку входа DLL приложения.
#include "stdafx.h"
BOOL APIENTRY DllMain( HMODULE hModule,
DWORD ul_reason_for_call,
LPVOID lpReserved
)
{
switch (ul_reason_for_call)
{
case DLL_PROCESS_ATTACH:
{
MessageBoxA(0, 0, 0, 0);
break;
}
case DLL_THREAD_ATTACH:
case DLL_THREAD_DETACH:
case DLL_PROCESS_DETACH:
break;
}
return TRUE;
}

0x09. Резюме

  Возможно, есть еще методы Ring3 инъекции DLL, которые я не изучил, как говорится, "Дорога в небо длинна, и я буду стремиться к вершинам, не сдаваясь!"

  Вот адрес для загрузки кода: https://github.com/YouArekongqi/InjectCollection.git

Вот краткое резюме Windows x86/x64 Ring3层注入Dll, которое я хочу предложить вам, чтобы оно было полезно!

Декларация: содержимое этой статьи было получено из Интернета, авторские права принадлежат соответствующему владельцу, материалы были предоставлены пользователями Интернета, сайт не обладает правами собственности, материалы не редактировались вручную, и сайт не несет ответственности за связанные с этим法律责任. Если вы обнаружите материалы,涉嫌侵犯版权, пожалуйста, отправьте письмо по адресу: notice#oldtoolbag.com (во время отправки письма замените # на @) для сообщения о нарушении,并提供 соответствующие доказательства. Если нарушение будет подтверждено, сайт немедленно удалят涉嫌侵权的内容。

Основной учебник
Вам может понравиться